BOCELLI, G. & GRENIER-LOUSTALOT, M. F. (1987). Acta Cryst. C43, 1223–1224.

HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.) LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-589.

RIZZOLI, C., SANGERMANO, V., CALESTANI, G. & ANDREETTI, G. D. (1987). J. Appl. Cryst. 20. In the press.

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1987). C43, 1226-1228

# Structure of Ethyl 2-Cyanomethyl-1- $\beta$ -D-arabinofuranosyl-1*H*-pyrrole-3-carboxylate

BY STEVEN B. LARSON, NABIH S. GIRGIS, HOWARD B. COTTAM AND ROLAND K. ROBINS

Nucleic Acid Research Institute, 3300 Hyland Avenue, Costa Mesa, California 92626 and Department of Chemistry, Brigham Young University, Provo, Utah 84602, USA

(Received 5 January 1987; accepted 2 February 1987)

Abstract.  $C_{14}H_{18}N_2O_6$ ,  $M_r = 310.31$ , orthorhombic, *P*2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, a = 4.8660 (2), b = 14.7729 (11), c =21.4296 (14) Å, V = 1540.4 (2) Å<sup>3</sup>, Z = 4,  $D_x = 1.338 \text{ g cm}^{-3}$ ,  $\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$ ,  $\mu = 8.518 \text{ cm}^{-1}$ , F(000) = 656, room temperature, R = 0.0453 for 1411 reflections ( $F \ge 4\sigma_F$ ). The  $\beta$  anomeric configuration is confirmed. The sugar ring is C(3')-endo  $({}^{3}T_{4}$  form) with a phase angle of pseudorotation of 23.8° and an amplitude of pucker of 36.7° [Altona & Sundaralingam (1972). J. Am. Chem. Soc. 94, 8205-8212]. The C(5')-O(5') side chain is in the gauche-trans conformation. The nucleoside conformation can be considered as *anti* with a torsion angle about the glycosidic bond  $[\chi = O(1')-C(1')-N(1)-C(5)]$  of 43.0 (5)°. All atoms of the base ring are within 0.012 Å of its mean plane. The ester moiety [excluding C(13)] is fairly planar as well. The dihedral angle between these planes is 7 (1)°. The cyanomethyl mean plane makes an angle of  $95.6(1)^{\circ}$  with the base ring. The hydroxyl hydrogens are involved in intermolecular hydrogen bonding.

**Experimental.** The title compound (1) was prepared as previously described (Girgis, Cottam, Larson & Robins, 1987b). Crystals grew as colorless, transparent flat needles. A crystal was mounted on the end of a glass fiber with epoxy. Details of data collection and structural refinement are given in Table 1.



0108-2701/87/061226-03\$01.50

 Table 1. Summary of data collection and structural refinement

| Data collection (295 K)                                      |                                                     |
|--------------------------------------------------------------|-----------------------------------------------------|
| Mode                                                         | ωscan                                               |
| Scan range (°)                                               | $0.80 + 0.15 \tan\theta$                            |
| Background (°)                                               | scan 0.25 times scan range before and<br>after scan |
| Scan rate (° min <sup>-1</sup> )                             | 1.27-5.5                                            |
| Exposure time (h)                                            | 26.7                                                |
| Stability correction range on I                              | 1.000-1.010                                         |
| $2\theta$ range (°)                                          | 3.0-150.0                                           |
| Total refls: measd, unique                                   | 1875, 1875                                          |
| Range in <i>hkl</i> : min.                                   | 000                                                 |
| max.                                                         | 6.18.26                                             |
| Crystal dimensions (mm)                                      | $0.33 \times 0.20 \times 0.09$                      |
| Crystal volume (mm <sup>3</sup> )                            | 0.00594                                             |
| Transmission factor range:                                   | 0.794-0.928                                         |
| Structure refinement                                         |                                                     |
| Instability factor p                                         | 0.02                                                |
| Reflections used, $m (I \ge 2\sigma)$                        | 1411                                                |
| No. of variables, n                                          | 226                                                 |
| Goodness of fit, S                                           | 2.364                                               |
| R, wR                                                        | 0.0453.0.0531                                       |
| R (all data)                                                 | 0.0908                                              |
| Max. shift/e.s.d.                                            | 0.01                                                |
| Max., min. density in $\Delta \rho$ map (e Å <sup>-3</sup> ) | 0.15, -0.18                                         |
|                                                              |                                                     |

Unit-cell parameters were obtained by least-squares refinement of the setting angles of 25 reflections with  $32.90 \le 2\theta \le 53.22^\circ$ .

Enraf-Nonius CAD-4 diffractometer with a graphite monochromator was used. Data reduction was performed with the *SDP-Plus* software (Frenz, 1985). Crystal and instrument stability was monitored by remeasurement of three check reflections every hour. A linear fit of the intensities of these reflections was used to correct the data.

Function minimized was  $\sum w(F_o - F_c)^2$ , where  $w = \sigma_F^{-2}$ .  $\sigma_F = F\sigma_I/2I$ ;  $\sigma_I = [N_{pk} + N_{bg1} + N_{bg2} + (pI)^2]^{1/2}$ .

21 non-hydrogen atoms were located with MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982); the remaining nonhydrogen atom was located in an electron density difference map. H atoms were located in difference

© 1987 International Union of Crystallography

maps; methyl and methylene H atoms were idealized. The structure was refined by full-matrix least squares (Frenz, 1985) to R = 0.0453. Scattering factors and

#### Table 2. Atomic positions and thermal parameters

| x           | у                                                                                                                                                                                                                                                                                                                                                     | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $U/U_{eq}^{*}(Å^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.3838 (6)  | 0.8596 (2)                                                                                                                                                                                                                                                                                                                                            | 0.90408 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0391 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.2963 (8)  | 0.9273 (2)                                                                                                                                                                                                                                                                                                                                            | 0.94238 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0394 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.4466 (9)  | 0.9208 (2)                                                                                                                                                                                                                                                                                                                                            | 0.99714 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0498 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6263 (9)  | 0.8451(2)                                                                                                                                                                                                                                                                                                                                             | 0.9917 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0532 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5870 (9)  | 0.8103 (2)                                                                                                                                                                                                                                                                                                                                            | 0.9336 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0501 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.0688 (8)  | 0.9915 (2)                                                                                                                                                                                                                                                                                                                                            | 0.92545 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0463 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1567 (10) | 1.0688 (2)                                                                                                                                                                                                                                                                                                                                            | 0.8900 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0654 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.2156 (13) | 1.1313 (2)                                                                                                                                                                                                                                                                                                                                            | 0.8618 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.117(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.4317 (11) | 0.9787 (3)                                                                                                                                                                                                                                                                                                                                            | 1.0530 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.068 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5569 (11) | 0.9641 (3)                                                                                                                                                                                                                                                                                                                                            | 1.09940 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.136 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.2772 (9)  | 1.0512 (2)                                                                                                                                                                                                                                                                                                                                            | 1.04563 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0972 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.259 (2)   | 1.1130 (3)                                                                                                                                                                                                                                                                                                                                            | 1.0972 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.124 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.213 (2)   | 1.1980 (4)                                                                                                                                                                                                                                                                                                                                            | 1.0767 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.174 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.2815 (8)  | 0.8434 (2)                                                                                                                                                                                                                                                                                                                                            | 0.84144 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0426 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0-4788 (8)  | 0.8736 (2)                                                                                                                                                                                                                                                                                                                                            | 0.78947 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0408 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6183 (9)  | 0.7865 (2)                                                                                                                                                                                                                                                                                                                                            | 0.7695 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0464 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0-3918 (9)  | 0.7168 (2)                                                                                                                                                                                                                                                                                                                                            | 0.7782 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0463 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.4916 (10) | 0.6217 (2)                                                                                                                                                                                                                                                                                                                                            | 0.7899 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0581 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.2472 (6)  | 0.74775 (15)                                                                                                                                                                                                                                                                                                                                          | 0.83315 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0492 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.6581 (6)  | 0.94157 (13)                                                                                                                                                                                                                                                                                                                                          | 0.80992 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0485 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.7147 (7)  | 0.7944 (2)                                                                                                                                                                                                                                                                                                                                            | 0.70767 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0702 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.2771 (7)  | 0.55699 (15)                                                                                                                                                                                                                                                                                                                                          | 0.78663 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0697 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.696 (10)  | 0.973 (2)                                                                                                                                                                                                                                                                                                                                             | 0.776 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.755 (10)  | 0.746 (3)                                                                                                                                                                                                                                                                                                                                             | 0.686 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.193 (10)  | 0.565 (3)                                                                                                                                                                                                                                                                                                                                             | 0.823 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | x<br>0.3838 (6)<br>0.2963 (8)<br>0.4466 (9)<br>0.6263 (9)<br>0.06283 (8)<br>0.1567 (10)<br>0.2156 (13)<br>0.4317 (11)<br>0.2772 (9)<br>0.229 (2)<br>0.2313 (2)<br>0.2815 (8)<br>0.4788 (8)<br>0.6183 (9)<br>0.3918 (9)<br>0.3918 (9)<br>0.2916 (10)<br>0.2472 (6)<br>0.6581 (6)<br>0.7147 (7)<br>0.2771 (7)<br>0.696 (10)<br>0.755 (10)<br>0.193 (10) | xy $0.3838$ (6) $0.8596$ (2) $0.2963$ (8) $0.9273$ (2) $0.4466$ (9) $0.9208$ (2) $0.6263$ (9) $0.8451$ (2) $0.5870$ (9) $0.8451$ (2) $0.5870$ (9) $0.8451$ (2) $0.0688$ (8) $0.9915$ (2) $0.1567$ (10) $1.0688$ (2) $0.2156$ (13) $1.1313$ (2) $0.4317$ (11) $0.9787$ (3) $0.5569$ (11) $0.9641$ (3) $0.2772$ (9) $1.0512$ (2) $0.259$ (2) $1.1130$ (3) $0.2156$ (8) $0.8434$ (2) $0.2815$ (8) $0.8434$ (2) $0.2815$ (8) $0.8434$ (2) $0.4788$ (8) $0.8736$ (2) $0.4916$ (10) $0.6217$ (2) $0.2472$ (6) $0.74775$ (15) $0.6581$ (6) $0.94157$ (13) $0.7147$ (7) $0.7944$ (2) $0.2771$ (7) $0.55699$ (15) $0.696$ (10) $0.773$ (2) $0.7755$ (10) $0.7746$ (3) $0.193$ (10) $0.565$ (3) | X $y$ $z$ $0.3838$ (6) $0.8596$ (2) $0.90408$ (11) $0.2963$ (8) $0.9273$ (2) $0.94238$ (13) $0.4466$ (9) $0.9208$ (2) $0.99714$ (14) $0.6263$ (9) $0.8451$ (2) $0.9917$ (2) $0.5870$ (9) $0.8103$ (2) $0.99336$ (2) $0.0688$ (8) $0.9915$ (2) $0.92545$ (14) $0.1567$ (10) $1.0688$ (2) $0.8900$ (2) $0.4317$ (11) $0.9787$ (3) $1.0530$ (2) $0.4317$ (11) $0.9787$ (3) $1.0530$ (2) $0.5569$ (11) $0.9641$ (3) $1.09940$ (13) $0.2772$ (9) $1.0512$ (2) $1.04563$ (12) $0.259$ (2) $1.1130$ (3) $1.0972$ (2) $0.213$ (2) $1.980$ (4) $1.0767$ (3) $0.2815$ (8) $0.8434$ (2) $0.7847$ (14) $0.6183$ (9) $0.7865$ (2) $0.78947$ (14) $0.6183$ (9) $0.7168$ (2) $0.7899$ (2) $0.3918$ (9) $0.7168$ (2) $0.7899$ (2) $0.2472$ (6) $0.74775$ (15) $0.83315$ (10) $0.6581$ (6) $0.94157$ (13) $0.80992$ (9) $0.7147$ (7) $0.7944$ (2) $0.70767$ (11) $0.2771$ (7) $0.5569$ (15) $0.78663$ (11) $0.696$ (10) $0.973$ (2) $0.776$ (2) $0.755$ (10) $0.746$ (3) $0.686$ (2) $0.193$ (10) $0.555$ (3) $0.823$ (2) |

\* For non-hydrogen atoms,  $U_{eq}$  is calculated as

$$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^{\dagger} a_j^{\dagger} A_i$$

where  $A_{ij}$  is the dot product of the *i*th and *j*th direct-space unit-cell vectors.

## Table 3. Bond lengths (Å) and bond angles (°)

| 1     | 2     | 3     | 1-2       | 1-2-3     |
|-------|-------|-------|-----------|-----------|
| C(2)  | N(1)  | C(5)  | 1.362 (4) | 109.5 (3) |
| C(5)  | N(1)  | C(1') | 1.382 (5) | 125.7 (3) |
| C(1') | N(1)  | C(2)  | 1.451 (4) | 124.8 (3) |
| C(3)  | C(2)  | C(6)  | 1.386 (5) | 129.5 (3) |
| C(3)  | C(2)  | N(1)  |           | 107.1 (3) |
| C(6)  | C(2)  | N(1)  | 1.502 (5) | 123.3 (3) |
| C(4)  | C(3)  | C(9)  | 1.425 (5) | 123.5 (3) |
| C(4)  | C(3)  | C(2)  |           | 108.0 (3) |
| C(9)  | C(3)  | C(2)  | 1.473 (5) | 128.5 (4) |
| C(5)  | C(4)  | C(3)  | 1.360 (5) | 106-6 (3) |
| N(1)  | C(5)  | C(4)  |           | 108.7 (3) |
| C(7)  | C(6)  | C(2)  | 1.437 (5) | 114.2 (3) |
| N(8)  | C(7)  | C(6)  | 1.140 (5) | 177.2 (6) |
| O(10) | C(9)  | O(11) | 1.186 (5) | 122.8 (4) |
| O(10) | C(9)  | C(3)  |           | 123-4 (4) |
| 0(11) | C(9)  | C(3)  | 1.319 (6) | 113.7 (3) |
| C(12) | O(11) | C(9)  | 1.436 (5) | 117.3 (4) |
| C(13) | C(12) | O(11) | 1.349 (8) | 110.6 (4) |
| C(2') | C(1') | O(1') | 1.536 (5) | 105-6 (2) |
| C(2') | C(1′) | N(1)  |           | 114-1 (3) |
| O(1') | C(1') | N(1)  | 1-434 (4) | 108-4 (2) |
| C(3') | C(2') | O(2′) | 1.517 (5) | 114.7 (3) |
| C(3') | C(2') | C(1') |           | 103-8 (3) |
| O(2') | C(2') | C(1') | 1.401 (4) | 111.7 (2) |
| C(4′) | C(3') | O(3') | 1.520 (6) | 114.4 (3) |
| C(4′) | C(3′) | C(2') |           | 102-4 (3) |
| O(3') | C(3′) | C(2') | 1.410 (4) | 110-1 (3) |
| C(5') | C(4′) | O(1′) | 1.508 (5) | 108-4 (3) |
| C(5') | C(4′) | C(3') |           | 114.7 (4) |
| O(1') | C(4′) | C(3') | 1.447 (4) | 103.8 (3) |
| O(5') | C(5′) | C(4′) | 1.417 (5) | 112.5 (4) |
| C(1′) | O(1′) | C(4′) |           | 110.9 (2) |

anomalous-dispersion corrections were taken from *International Tables for X-ray Crystallography* (1974). All computations were performed with the *SDP-Plus* program package (Frenz, 1985).

Atomic coordinates are listed in Table 2;\* bond lengths and bond angles are in Table 3. Fig. 1 is a perspective *ORTEPII* (Johnson, 1976) drawing of the molecule with atom labels indicated. Fig. 2 is the packing diagram indicating the intermolecular hydrogen bonding listed in Table 4.

\* Tables of anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, least-squares planes and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43773 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 1. Perspective drawing of (1) indicating atom labeling. Thermal ellipsoids are drawn at the 50% probability level. The large thermal ellipsoids and short C(12)-C(13) bond suggest disorder.



Fig. 2. Perspective drawing of the molecular packing as viewed down the c axis. The hydrogen bonding is indicated by thin lines.

#### Table 4. Hydrogen bonding for (1)

| $D-H\cdots A$         | Symmetry of A           | $d(D \cdots A)$ | $d(\mathbf{H}\cdots A)$ | $\angle (D - H \cdots A)$ |
|-----------------------|-------------------------|-----------------|-------------------------|---------------------------|
|                       | relative to D           | (Å)             | (Å)                     | (°)                       |
| O(2')-H(O2')····O(5') | 1-x, 0.5+y, 1.5-z       | 2.699 (3)       | 1.83 (4)                | 168 (4)                   |
| O(3')-H(O3')····N(8)  | 1-x, y=0.5, 1.5-z       | 2.854 (4)       | 1.98 (4)                | 171 (4)                   |
| O(5')-H(O5')O(10)     | x = 0.5, 1.5 - y, 2 - z | 2.685 (4)       | 1.84 (4)                | 158 (4)                   |

**Related literature.** A fused pyrrolo-arabinofuranosylnucleoside has recently been reported (Girgis, Cottam, Larson & Robins, 1987*a*). Nucleoside and nucleotide structural parameters have been discussed by Altona & Sundaralingam (1972).

#### References

ALTONA, C. & SUNDARALINGAM, M. (1972). J. Am. Chem. Soc. 94, 8205–8212.

FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft.

- GIRGIS, N. S., COTTAM, H. B., LARSON, S. B. & ROBINS, R. K. (1987a). J. Heterocycl. Chem. Accepted.
- GIRGIS, N. S., COTTAM, H. B., LARSON, S. B. & ROBINS, R. K. (1987b). Nucleic Acids Res. 15, 1217–1226.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1987). C43, 1228–1229

### 9-Acetyloxymethyl-1,3,4-trifluoro-7-methyl-11H-pyrido[4,3-c]benzo[1,2]diazepine

#### BY R. G. PRITCHARD

Department of Chemistry, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England

(Received 30 October 1986; accepted 10 February 1987)

Abstract.  $C_{16}H_{12}F_{3}N_{3}O_{2}$ ,  $M_{r} = 335 \cdot 3$ , monoclinic,  $P2_{1}/c$ ,  $a = 13 \cdot 591$  (4),  $b = 4 \cdot 823$  (3),  $c = 24 \cdot 930$  (4) Å,  $\beta = 115 \cdot 60$  (2)°,  $V = 1473 \cdot 7$  Å<sup>3</sup>, Z = 4,  $D_{x} = 1 \cdot 51$  Mg m<sup>-3</sup>,  $\lambda$ (Mo Ka) = 0.71069 Å,  $\mu = 0.084$  mm<sup>-1</sup>, F(000) = 688, T = 293 K, R = 0.042 for 1313 unique reflexions  $[F > 3\sigma(F)]$ . The ring skeleton is composed of a boat-shaped diazepine nucleus flanked by benzene and pyridine rings, whose planes intersect at an angle of  $113 \cdot 6$  (6)°.

Experimental. The title compound was obtained in admixture with 1.3.4-trifluoro-7.9-dimethyl-11Hpyrido[4,3-c]benzo[1,2]diazepine by heating a solution 2,3,5,6-tetrafluoro-4-(2,4,6-trimethylphenylazo)of pyridine in glacial acetic acid containing fused potassium acetate at 392 K for 4 h. The mixture was separated chromatographically followed by recrystallization from aqueous ethanol, m.p. 415 K. Crystal dimensions  $0.2 \times 0.2 \times 0.1$  mm, Enraf-Nonius CAD-4 diffractometer, graphite-monochromatized Μο Κα radiation, unit-cell dimensions from setting angles of 25 accurately centred reflexions (4.4 <  $\theta$  < 9.1°),  $\omega$ -2 $\theta$ scan mode used to measure 1905 reflexions with I > 0,  $\omega$ -scan width of  $0.40^\circ + 0.35^\circ \tan\theta$  and scan speed ranging from 0.6 to  $5^{\circ}$  min<sup>-1</sup> according to the intensity gathered in a pre-scan,  $-14 \le h \le 14$ ,  $0 \le k \le 5$ ,  $0 \le l \le 28$ ,  $0 \le \theta \le 25^{\circ}$ , 1313 unique structure amplitudes with  $F \ge 3\sigma(F)$ , negligible drift in three intensity standards (206, 312, 114) measured every 2h, Lorentz and polarization corrections but absorption ignored, MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) used to solve the phase problem by direct methods, all non-H atoms found in a Fourier map, H atoms from difference Fourier map, full-matrix least-squares refinement based on F using SHELX76 (Sheldrick, 1976), final R = 0.042, wR = 0.044, w =  $1.5022/[\sigma^2(F_o) + 0.000272F_o^2]$ , anisotropic thermal parameters for heavier atoms, isotropic for H. Maximum fluctuation in final difference map in range -0.15 to +0.18 e Å<sup>-3</sup>, maximum LS shift-to-e.s.d. ratio 0.058 [y, H(20)].

Scattering factors from International Tables for X-ray Crystallography (1974), computations carried out on the joint CDC 7600/Amdahl 470 system of the University of Manchester Regional Computing Centre.

Fractional atomic coordinates and vibrational parameters are listed in Table 1,\* selected bond lengths in Table 2. The molecule, including labelling scheme, is displayed in Fig. 1.

**Related literature.** Details of relevant structures can be found in Alty, Banks, Fishwick, Pritchard & Thompson (1984) and Pritchard (1987).

0108-2701/87/061228-02\$01.50

© 1987 International Union of Crystallography

<sup>\*</sup> Lists of structure factors, anisotropic vibrational parameters, H-atom parameters, all bond lengths and angles, torsion angles and normalized least-squares-planes calculations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43690 (15 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.